Simulation Concepts and by Hand Simuation

Contents

- Underlying ideas, methods, and issues in simulation
- Software-independent (setting up for Arena)
- Centered around an example of a simple processing system
- Decompose the problem
- Terminology
- Simulation by hand
- Some basic statistical issues
- Overview of a simulation study

The System: A Simple Processing System

Machine
(Server)

The System Contd...

- General intent:
- Estimate expected production
- Waiting time in queue, queue length, proportion of time machine is busy
- Time units
- Can use different units in different places ... must declare
- Be careful to check the units when specifying inputs
- Declare base time units for internal calculations, outputs
- Be reasonable (interpretation, round-off error)

Model Specifics

- Initially (time 0) empty and idle
- Base time units: minutes
- Input data (assume given for now ...), in minutes:

Part Number	Arrival Time	Interarrival Time	Service Time
1	0.00	1.73	2.90
2	1.73	1.35	1.76
3	3.08	0.71	3.39
4	3.79	0.62	4.52
5	4.41	14.28	4.46
6	18.69	0.70	4.36
7	19.39	15.52	2.07
8	34.91	3.15	3.36
9	38.06	1.76	2.37
10	39.82	1.00	5.38
11	40.82	.	.
.	.	.	.

- Stop when 20 minutes of (simulated) time have passed

Goals of the Study: Output Performance Measures

- Total production of parts over the run (P)
- Average waiting time of parts in queue:
$\sum^{N} W_{1} \quad N=n o$ of parts completing queue wait $\sum_{i=1}^{N} W Q_{i} \quad W Q_{i}=$ waiting time in queue of ith part N
- Maximum waiting time of parts in queue: $\max W Q_{i}$ $i=1, \ldots, N$

Contd...

- Time-average number of parts in queue:
$\int_{0}^{20} Q(t) d t$ 20
$Q(t)=$ number of parts in queue at time t
- Maximum number of parts in queue: $\max _{0 \leq t \leq 20} Q(t)$
- Average and maximum total time in system of parts (a.k.a. cycle time):
$\underset{i=1}{\sum_{i}^{P} T S_{i}}$,
$\max _{i=1, \ldots, P} T S_{i}$
$T S_{i}=$ time in system of part \boldsymbol{i}

Contd...

- Utilization of the machine (proportion of time busy)
$\int_{0}^{20} B(t) d t$
20
$B(t)= \begin{cases}1 & \text { if the machine is busy at time } t \\ 0 & \text { if the machine is idle at time } t\end{cases}$
- Many others possible (information overload?)

Analysis Options

- Educated guessing
- Average interarrival time $=4.08$ minutes
- Average service time $=3.46$ minutes
- So (on average) parts are being processed faster than they arrive
- System has a chance of operating in a stable way in the long run, i.e., might not "explode"
- If all interarrivals and service times were exactly at their mean, there would never be a queue
- But the data clearly exhibit variability, so a queue could form
- If we'd had average interarrival < average service time, and this persisted, then queue would explode
- Guessing has its limits ...

Analysis Options (cont'd.)

- Queuing theory
- Requires additional assumptions about the model
- Popular, simple model: $M / M / 1$ queue
- Interarrival times ~ exponential
- Service times ~ exponential, independent of interarrivals
- Must have E(service) < E(interarrival)
- Steady-state (long-run, forever)
- Exact analytic results; e.g., average waiting time in queue is
$\frac{\mu_{S}^{2}}{\mu_{A}-\mu_{S}}$,

$$
\begin{aligned}
& \mu_{A}=\mathrm{E}(\text { interarrival time }) \\
& \mu_{S}=\mathrm{E}(\text { service time })
\end{aligned}
$$

- Problems: validity, estimating means, time frame
- Often useful as first-cut approximation

Mechanistic Simulation

- Individual operations (arrivals, service times) will occur exactly as in reality
- Movements, changes occur at the right "time," in the right order
- Different pieces interact
- Install "observers" to get output performance measures
- Concrete, "brute-force" analysis approach
- Nothing mysterious or subtle
- But a lot of details, bookkeeping
- Simulation software keeps track of things for you

Pieces of a Simulation Model

- Entities
- "Players" that move around, change status, affect and are affected by other entities
- Dynamic objects - get created, move around, leave (maybe)
- Usually represent "real" things
- Our model: entities are the parts
- Can have "fake" entities for modeling "tricks"
- Breakdown demon
- Usually have multiple realizations floating around
- Can have different types of entities concurrently
- Usually, identifying the types of entities is the first thing to do in building a model

Pieces of a Simulation Model (cont'd.)

- Attributes
- Characteristic of all entities: describe, differentiate
- All entities have same attribute "slots" but different values for different entities, for example:
- Time of arrival
- Due date
- Priority
- Color
- Attribute value tied to a specific entity
- Like "local" (to entities) variables
- Some automatic in Arena, some you define

Pieces of a Simulation Model (cont'd.)

- (Global) Variables
- Reflects a characteristic of the whole model, not of specific entities
- Used for many different kinds of things
- Travel time between all station pairs
- Number of parts in system
- Simulation clock (built-in Arena variable)
- Name, value of which there's only one copy for the whole model
- Not tied to entities
- Entities can access, change variables
- Writing on the wall
- Some built-in by Arena, you can define others

Pieces of a Simulation Model (cont'd.)

- Resources
- What entities compete for
- People
- Equipment
- Space
- Entity seizes a resource, uses it, releases it
- Think of a resource being assigned to an entity, rather than an entity "belonging to" a resource
- "A" resource can have several units of capacity
- Seats at a table in a restaurant
- Identical ticketing agents at an airline counter
- Number of units of resource can be changed during the simulation

Pieces of a Simulation Model (cont'd.)

- Queues
- Place for entities to wait when they can't move on (maybe since the resource they want to seize is not available)
- Have names, often tied to a corresponding resource
- Can have a finite capacity to model limited space - have to model what to do if an entity shows up to a queue that's already full
- Usually watch the length of a queue, waiting time in it

Pieces of a Simulation Model (cont'd.)

- Statistical accumulators
- Variables that "watch" what's happening
- Depend on output performance measures desired
- "Passive" in model - don’t participate, just watch
- Many are automatic in Arena, but some you may have to set up and maintain during the simulation
- At end of simulation, used to compute final output performance measures

Pieces of a Simulation Model (cont'd.)

- Statistical accumulators for the simple processing system
- Number of parts produced so far
- Total of the waiting times spent in queue so far
- No. of parts that have gone through the queue
- Max time in queue we've seen so far
- Total of times spent in system
- Max time in system we've seen so far
- Area so far under queue-length curve $Q(t)$
- Max of $Q(t)$ so far
- Area so far under server-busy curve $B(t)$

Simulation Dynamics: The Event-Scheduling

- Identify characteristic events
- Decide on logic for each type of event to
- Effect state changes for each event type
- Observe statistics
- Update times of future events (maybe of this type, other types)
- Keep a simulation clock, future event calendar
- Jump from one event to the next, process, observe statistics, update event calendar
- Must specify an appropriate stopping rule
- Usually done with general-purpose programming language (C, FORTRAN, etc.)

Events for the Simple Processing System

- Arrival of a new part to the system
- Update time-persistent statistical accumulators (from last event to now)
- Area under $Q(t)$
- Max of $Q(t)$
- Area under $B(t)$
- "Mark" arriving part with current time (use later)
- If machine is idle:
- Start processing (schedule departure), Make machine busy, Tally waiting time in queue (0)
- Else (machine is busy):
- Put part at end of queue, increase queue-length variable
- Schedule the next arrival event

Events for the

Simple Processing System (cont'd.)

- Departure (when a service is completed)
- Increment number-produced state accumulator
- Compute \& tally time in system (now - time of arrival)
- Update time-persistent statistics (as in arrival event)
- If queue is non-empty:
- Take first part out of queue, compute $\&$ tally its waiting time in queue, begin service (schedule departure event)
- Else (queue is empty):
- Make the machine idle (Note: there will be no departure event scheduled on the future events calendar, which is as desired)

Events for the

Simple Processing System (cont'd.)

- The End
- Update time-persistent statistics (to end of the simulation)
- Compute final output performance measures using current (= final) values of statistical accumulators
- After each event, the event calendar's top record is removed to see what time it is, what to do
- Also must initialize everything

Some Additional Specifics for the Simple Processing System

- Simulation clock variable (internal in Arena)
- Event calendar: List of event records:
- [Entity No., Event Time, Event Type]
- Keep ranked in increasing order on Event Time
- Next event always in top record
- Initially, schedule first Arrival, The End (Dep.?)
- State variables: describe current status
- Server status $B(t)=1$ for busy, 0 for idle
- Number of customers in queue $Q(t)$
- Times of arrival of each customer now in queue (a list of random length)

Simulation by Hand

- Manually track state variables, statistical accumulators
- Use "given" interarrival, service times
- Keep track of event calendar
- "Lurch" clock from one event to the next

Model Specifics

- Initially (time 0) empty and idle
- Base time units: minutes
- Input data (assume given for now ...), in minutes:

Part Number	Arrival Time	Interarrival Time	Service Time
1	0.00	1.73	2.90
2	1.73	1.35	1.76
3	3.08	0.71	3.39
4	3.79	0.62	4.52
5	4.41	14.28	4.46
6	18.69	0.70	4.36
7	19.39	15.52	2.07
8	34.91	3.15	3.36
9	38.06	1.76	2.37
10	39.82	1.00	5.38
11	40.82	.	.
.	.	.	.

- Stop when 20 minutes of (simulated) time have passed

Simulation by Hand:
 Setup

Simulation by Hand: $t=0.00$, Initialize

Simulation by Hand: $\boldsymbol{t}=\mathbf{0 . 0 0}$, Arrival of Part 1

Simulation by Hand:
 $t=1.73$, Arrival of Part 2

Simulation by Hand: $\boldsymbol{t}=\mathbf{2 . 9 0}$, Departure of Part 1

Simulation by Hand: $t=3.08$, Arrival of Part 3

Simulation by Hand:
 $t=3.79$, Arrival of Part 4

$\begin{array}{cc} \text { System } \\ 4 & 3 \\ \end{array}$	Clock 3.79	$\begin{aligned} & B(t) \\ & 1 \end{aligned}$			Arrival times of custs. in queue (3.79, 3.08)	Event calen $[5$, $[2.41$, $[-$, -20.00,	Arr] Dep] End]
Number of completed waiting times in queue 2	Total of waiting times in queue1.17			Area under $Q(t)$$1.88$		Area under $B(t)$ 3.79	
$Q(t)$ graph	\square						
$B(t)$ graph							
Interarrival times	$1.78,1.35,0.7 \times, 0.62,14.28,0.70,15.52,3.15,1.76,1.00, \ldots$						
Service times	$2.90,1.76,3.39,4.52,4.46,4.36,2.07,3.36,2.37,5.38, \ldots$						

Simulation by Hand: $t=4.41$, Arrival of Part 5

Simulation by Hand:

 $t=4.66$, Departure of Part 2

Simulation by Hand: $t=8.05$, Departure of Part 3

Simulation by Hand: $t=12.57$, Departure of Part 4

System $\quad 5$	$\begin{aligned} & \text { Clock } \\ & 12.57 \end{aligned}$	$\begin{aligned} & B(t) \\ & 1 \end{aligned}$	$Q(t)$		Arrival times of custs. in queue	Event calen $[5$, 17.03, $[6$, 18.69 $[-$, 20.00	Dep] Arr] End]
Number of completed waiting times in queue 5	Total of waiting times in queue 15.17			Area under $Q(t)$$15.17$		Area under $B(t)$ 12.57	
$Q(t)$ graph							
$B(t)$ graph						$\overline{15}$	$\xrightarrow{20}$
Interarrival times	$1.73,1.35,0.71,0.62,14.28,0.70,15.52,3.15,1.76,1.00, \ldots$						
Service times	$2.90,1.78,3.39,4.52,4.48,4.36,2.07,3.36,2.37,5.38, \ldots$						

Simulation by Hand: $t=17.03$, Departure of Part 5

Simulation by Hand: $t=18.69$, Arrival of Part 6

System	$\begin{aligned} & \text { Clock } \\ & 18.69 \end{aligned}$	$\begin{aligned} & B(t) \\ & 1 \end{aligned}$	$Q(t)$ 0	Arrival times of custs. in queue ()	Event calen $[7$, 19.39, $[-$, 20.00, $[6$, 23.05,	Arr] End] Dep]
Number of completed waiting times in queue 6	Total of waiting times in queue15.17			Area under $Q(t)$ 15.17	Area under $B(t)$ 17.03	
$Q(t)$ graph						
$B(t)$ graph						
Interarrival times	173, 1.85, 0.71, 0.62, 14.28,0.70, 15.52, 3.15, 1.76, 1.00, ..					
Service times	2.80, 1.76, 3.89, 4.52, 4.46, 4.36, 2.07, 3.36, 2.37, 5.38, ..					

Simulation by Hand: $t=19.39$, Arrival of Part 7

System 7 	$\begin{aligned} & \text { Clock } \\ & 19.39 \end{aligned}$	$\begin{aligned} & B(t) \\ & 1 \end{aligned}$		Arrival custs. in	Event calen $[-$, 20.00 $[6$, 23.05, $[8$, 34.91, A	End] Dep] Arr]
Number of completed waiting times in queue 6	Total of waiting times in queue15.17			Area under $Q(t)$ 15.17	Area unde $B(t)$ 17.73	
$Q(t)$ graph						
$B(t)$ graph						
Interarrival times	1.78, 1.38, 0.74, 0.62, 1428, $070,1582,3.15,1.76,1.00, \ldots$					
Service times	$2.90,1.78,3.38,4.52,4.48,4.38,2.07,3.36,2.37,5.38, \ldots$					

Simulation by Hand: $t=20.00$, The End

Simulation by Hand: Finishing Up

- Average waiting time in queue:
$\frac{\text { Total of times in queue }}{\text { No. of times in queue }}=\frac{15.17}{6}=2.53$ minutes per part
- Time-average number in queue:
$\frac{\text { Area under } Q(t) \text { curve }}{\text { Final clock value }}=\frac{15.78}{20}=0.79$ part
- Utilization of drill press:
$\frac{\text { Area under } B(t) \text { curve }}{\text { Final clock value }}=\frac{18.34}{20}=0.92$ (dimensionless)

Complete Record of the Hand Simulation

Jait-F inished Eyent			Yeriables		A.triontes		Statistical A coumulators									E.		
$\begin{array}{\|l} \hline \text { Eatily } \\ \text { No. } \\ \hline \end{array}$	$\begin{gathered} \operatorname{Tim} 6 \\ t \\ \hline \end{gathered}$	$\begin{aligned} & \text { Zveat } \\ & \text { Type } \\ & \hline \end{aligned}$	20)	810	Arrival Times: (In Queue) In Service		,	N	$\Sigma W 0$	WO*	$\Sigma_{\text {JS }}$	$T S^{*}$	10	0^{*}	\int_{B}	Eatity, No., Time, Typz]		
-	D 00	1 Hil	0	0	()	-	0	0	0.00	0.00	0.06	0.00	0.06	0	10.00	$\begin{aligned} & {[1,} \\ & I^{-} \end{aligned}$	$\begin{array}{r} 0.00 \\ 20.00 \end{array}$	$\begin{aligned} & \text { ArII } \\ & \text { Eull } \end{aligned}$
1	D 00	A II	0	\dagger	()	0.00	0	1	0.100	0.00	0.001	0.00	0.06	0	10.00	$\begin{aligned} & {[2,} \\ & {[1,} \\ & I-, \end{aligned}$	$\begin{array}{r} 1.73, \\ 2.90, \\ 20.00, \\ \hline \end{array}$	$\begin{aligned} & \text { Arrl } \\ & \text { Depl } \\ & \text { Endl } \end{aligned}$
2	173	A H	1	1	(1.73)	0.00	0	1	0.110	0.00	0.00	0.00	0.06	1	1.73	[1. [3. I-	$\begin{aligned} & 2.90+ \\ & 3.08, \\ & 20.90 \end{aligned}$	$\begin{gathered} \text { Depl } \\ \text { Arl } \\ \text { Endl } \end{gathered}$
1	290	Dep	0	1	()	1.73	1	2	1.17	1.17	2.90	2.90	1.17	1	2.90	$\begin{aligned} & {[3,} \\ & {[2,} \\ & {[-} \end{aligned}$	$\begin{array}{r} 3.08, \\ 4.66, \\ 20.06, \\ \hline \end{array}$	$\begin{aligned} & \text { Arl } \\ & \text { Depl } \\ & \text { EndI } \end{aligned}$
;	308	A II	1	1	(3.08)	1.73	1	2	1.17	1.17	2.90	2.90	1.17	1	3.08	$\begin{aligned} & {[4,} \\ & {[2,} \\ & \mathrm{I}-, \end{aligned}$	$\begin{array}{r} 3.79, \\ 4.66, \\ 20.00 . \end{array}$	$\begin{aligned} & \text { A.III } \\ & \text { Depl } \\ & \text { EndI } \end{aligned}$
2	379	A 7	2	1	(1,79, 3 08)	1.73	1	2	1.17	1.17	2.90	2.90	1.88	2	3.79	$\begin{aligned} & {[5,} \\ & {[2,} \end{aligned}$	$\begin{array}{r} 4.41, \\ 4.66, \\ 20.00, \\ \hline \end{array}$	$\begin{aligned} & \text { A.rl } \\ & \text { Depl } \\ & \text { En. } \end{aligned}$
5	441	ATI	3	1	(4.41, 3.79, 3.08)	1.73	1	2	1.17	1.17	2.90	2.90	3.12	$\}$	4.41	$\begin{aligned} & {[2,} \\ & 16, \\ & {[-} \end{aligned}$		$\begin{aligned} & \text { Depl } \\ & \text { A.II } \\ & \text { En. } 1 \text { I } \end{aligned}$
2	466	Dep	2	1	(4.41, 3,79)	3.08	2	3	2.75	1.58	5.55	293	3.85	\%	4.66		$\begin{array}{r} 8.05, \\ 18.65, \\ 20.00 . \end{array}$	$\begin{aligned} & \text { Depl } \\ & \text { ArII } \\ & \text { Endil } \end{aligned}$
§	805	Dep	1	1	(4.41)	3.79	3	4	7.10	4.26	10.80	4.97	10.65	3	8.05	$\begin{aligned} & {[4,} \\ & 16, \\ & {[-} \end{aligned}$	$\begin{aligned} & 12.57, \\ & 18.69, \\ & 20.00, \end{aligned}$	$\begin{aligned} & \text { Depl } \\ & \text { AII } \\ & \text { End } 1 \end{aligned}$
4	1257	Dep	0	1	()	4.41	4	5	15.17	3.16	19.58	8.78	15.17	₹	12.57	[5. [6, I-	$\begin{aligned} & 17.03, \\ & 18.65, \\ & 20.00, \end{aligned}$	$\begin{aligned} & \text { Depl } \\ & \text { A.r1 } \\ & \text { EndI } \end{aligned}$
5	1703	Dep	0	0	()	-	5	5	15.17	3.16	32.20	12.62	15.15	3	17.03	$[6,$	$\begin{gathered} 18.69, \\ 26.97 \\ \hline \end{gathered}$	$\begin{aligned} & \text { AIII } \\ & \text { End1 } \end{aligned}$
6	1869	A 1	0	1	()	18.69	5	6	15.17	3.16	32.20	12.62	15.17	$₹$	17.03	$\begin{aligned} & \text { I7, }^{1-} \\ & \mathrm{I}_{1}, \\ & 16, \end{aligned}$	19 39 20.00 . 23.015.	$\begin{aligned} & \text { Arrl } \\ & \text { Endl } \\ & \text { Depl } \end{aligned}$
7 -	1939 2000	$\begin{aligned} & \mathrm{Art} \\ & \mathrm{Erc} \end{aligned}$	1 1	1 I	$\begin{aligned} & 119.39) \\ & (19.39) \end{aligned}$	18.69 18,69	5 5	6 6	15.17 15.17	3.16 8.16	32.20 32.10	12.62 12.62	15.15 15.78	3	17.73 18.34	$\begin{aligned} & {[-,} \\ & 16, \\ & {[8,} \\ & {[6,} \\ & {[8,} \end{aligned}$	20.00, 23.05, 34.91, 23.05, 34.91,	$\begin{aligned} & \text { Enill } \\ & \text { Depl } \\ & \text { A.rI } \\ & \text { Depl } \\ & \text { AII } \end{aligned}$

Event-Scheduling Logic via Programming

- Clearly well suited to standard programming
- Often use "utility" libraries for:
- List processing
- Random-number generation
- Random-variant generation
- Statistics collection
- Event-list and clock management
- Summary and output
- Main program ties it together, executes events in order

Simulation Dynamics: The ProcessInteraction World View

- Identify characteristic entities in the system
- Multiple copies of entities co-exist, interact, compete
- Tell a "story" about what happens to a "typical" entity
- May have many types of entities, "fake" entities for things like machine breakdowns

Randomness in Simulation

- The above was just one "replication" - a sample of size one (not worth much)
- Made a total of five replications:

Performanee Mcasure	Replication					Sample		95\%	Note substantial
	1	2	3	4	5	Avg.	Std. Dev.	Half Width	
Total production	5	3	6	2	\exists	3.80	1.64	2.04	variability
Average waiting time in queue	2.53	1.19	1.02	1.62	0.00	1.27	0.92	1.14	,
Maximum waiting time in queue	8.16	3.56	2.97	3.24	0.00	3.59*	2.93*	3.63*	across
Average total time in system	6.44	5.10	4.16	6.71	4.26	5.33	1.19	1.48	replications
Maximum whal time in system	12.62	6.63	6.27	7.71	4.96	7.64*	2.95*	3.67*	
Time-average number of parts in quene	0.79	0.18	0.36	0.16	0.05	0.31	0.29	0.36	
Maximum number of parts in queue	3	1	2	1	1	1.60*	0.89*	1.11*	
Drill-press utilization	0.92	0.59	0.90	0.51	0.70	0.72	0.18	0.23	

- Confidence intervals for expected values:

-Confidence intervals for expected values:

In general,

$$
\bar{X} \pm t_{n-1,1-\alpha / 2} s / \sqrt{n}
$$

For expected total production,

$$
3.80 \pm(2.776)(1.64 / \sqrt{5})
$$

3.80 ± 2.04

Comparing Alternatives

- Usually, simulation is used for more than just a single model "configuration"
- Often want to compare alternatives, select or search for the best (via some criterion)
- Simple processing system: What would happen if the arrival rate were to double?
- Cut interarrival times in half
- Rerun the model for double-time arrivals
- Make five replications

Results: Original vs. Double-Time Arrivals

- Original - circles
- Double-time - triangles
- Replication 1 - filled in
- Replications 2-5 - hollow
- Note variability
- Danger of making decisions based on one (first) replication
- Hard to see if there are really differences
- Need: Statistical analysis of simulation output data

Overview of a Simulation Study

- Understand the system
- Be clear about the goals
- Formulate the model representation
- Translate into modeling software
- Verify "program"
- Validate model
- Design experiments
- Make runs
- Analyze, get insight, document results

